
PYTHON
FOR DATA SCIENCE

CHEAT SHEET

created by

Tomi Mester

I originally created this cheat sheet for my Python course and workshop

participants.* But I have decided to open-source it and make it available for

everyone who wants to learn Python for data science.

It's designed to give you a meaningful structure but also to let you add your own

notes (that's why the empty boxes are there). It starts from the absolute basics -

print(‘Hello World!’) - and guides you to the intermediate level (for loops, if

statements, importing advanced libraries). It also contains a few important

functions of advanced libraries like pandas. I added everything that you will need

to get started as an absolute beginner — and I’ll continuously update and extend it

to make it a full comprehensive cheat sheet for junior data analysts/scientists.

The ideal use case of this cheat sheet is that you print it in color and keep it next to

you while you are learning and practicing Python on your computer.

Enjoy!

Cheers,

Tomi Mester

*The workshops and courses I mentioned:

Online Python and Pandas tutorial (free): data36.com/python-tutorial

Python workshop for companies: data36.com/python-workshop

6-week Data Science course: data36.com/jds

https://data36.com/python-tutorial
https://data36.com/python-workshop
https://data36.com/jds/

PYTHON FOR DATA SCIENCE CHEAT SHEET

VARIABLES IN PYTHON

In Python, you'll work with variables a lot.

You can assign a value to a variable as simply as:

variable_name = variable_value

If you assign a new value to a variable that you have used before, it will overwrite

your previous value. 

Examples:

a = 100

b = 'some_random_text'

c = True

d = 0.75

BASIC DATA TYPES

In Python, we have quite a few different data types. But these four are the most

important ones (for now):

1. Integer. A whole number without a fractional part. E.g. 100, 156, 2012412

2. Float. A number with a fractional part. E.g. 0.75, 3.1415, 961.1241250, 7/8

3. Boolean. A binary value. It can be either True or False.

4. String. It's a sequence of Unicode characters (e.g. numbers, letters,

punctuation). It can be alphabetical letters only — or a mix of letters, numbers

and other characters. In Python, it's easy to identify a string since it has to be

between apostrophes (or quotation marks). E.g. 'hello', 'R2D2', 'Tomi',

'124.56.128.41'

CREATED BY TOMI MESTER | DATA36.COM !1

[your notes]

http://DATA36.COM

PYTHON FOR DATA SCIENCE CHEAT SHEET

ARITHMETIC OPERATORS

Let's assign two values!

a = 3

b = 4

The arithmetic operations you can do with them:

DATA STRUCTURES

Data structures exist to organize your data and store related/similar data points in

one "place." There are four data structure types. The two most important in data

science are: lists and dictionaries.

#1: LISTS

A list is a sequence of values. It can store integers, strings, booleans, anything -

even a mix of these.

Example:

sample_list = ['value1', 'value2', 'value3', 'value4', 1, 2, 3, 4, True, False]

Querying an element of a list:

sample_list[3]

IMPORTANT! Python works with zero-based indexing. E.g.

Example:

sample_list[3] — (This returns 'value4'.)

CREATED BY TOMI MESTER | DATA36.COM !2

Artihmetic operator What does it do? Result in our example

a + b adds a to b 7

a - b subtracts b from a -1

a * b multiplies a by b 12

a / b divides a by b 0.75

b % a divides b by a and returns remainder 1

a ** b raises a to the the power of b 81

http://DATA36.COM

PYTHON FOR DATA SCIENCE CHEAT SHEET

#2: DICTIONARY

A dictionary is a collection of key-value pairs. (Key is a unique identifier, value is the

actual data.)  

Example:

sample_dict = {'apple': 3,

 'tomato': 4,

 'orange': 1,

 'banana': 14,

 'is_store_open': True}

Querying an element of a dictionary:

sample_dict['banana'] — (This returns 14.)

NESTED LISTS AND/OR DICTIONARY

You can create nested lists and dictionaries.

 
Example 1 (list within a list):

nested_list = ['val1', 'val2', ['nested_val1', 'nested_val2', 'nested_val3']]

Querying an element from the nested part:

nested_list[2][0] — (This returns 'nested_val1'.)

Example 2 (list within a dictionary):

nested_dict = {'key_a': ['nested_val1', 'nested_val2', 'nested_val3'],

 'key_b': 'val2',

 'key_c': 'val3'}

Querying an element from the nested part:

nested_dict['key_a'][0] — (This returns 'nested_val1'.)

CREATED BY TOMI MESTER | DATA36.COM !3

http://DATA36.COM

PYTHON FOR DATA SCIENCE CHEAT SHEET

FUNCTIONS AND METHODS

You can run functions and methods on your Python objects. Most functions and

methods are designed to perform a single action on your input and transform it

into a (different) output.

Example:

my_input = 'Hello'

len(my_input)

Output: 5 (That's the number of characters in 'Hello'.)

Calling a Python function looks like this: function_name(arguments)

Calling a Python method looks like this: input_value.method_name(arguments)

More details on the difference between functions and methods:

https://data36.com/python-functions

THE MOST IMPORTANT BUILT-IN FUNCTIONS

Let’s assign a variable: my_variable = 'Hello, World!'

print(my_variable)

This prints the value of my_variable to the screen.

Output: Hello, World!

len(my_variable)

This returns the number of characters in a string - or the number of elements in a

list. Output: 13 (That's the number of characters in 'Hello, World!')

type(my_variable)

This returns the data type of my_variable.

Output: str (That stands for string which is the data type of 'Hello, World!’)

Find more Python functions here: https://data36.com/python-functions

CREATED BY TOMI MESTER | DATA36.COM !4

https://data36.com/python-functions
http://DATA36.COM

PYTHON FOR DATA SCIENCE CHEAT SHEET

THE MOST IMPORTANT METHODS FOR PYTHON STRINGS

Let’s assign a variable: my_variable = 'Hello, World!'

my_variable.upper()

This returns the uppercase version of a string.

Output: 'HELLO, WORLD!'

my_variable.lower()

This returns the lowercase version of a string.

Output: 'hello, world!'

my_variable.split(',')

This splits your string into a list. The argument specifies the separator that you

want to use for the split.

Output: ['Hello', ' World']

my_variable.replace('World', 'Friend')

This replaces a given string with another string. Note that it's case sensitive.

Output: 'Hello, Friend!'

THE MOST IMPORTANT METHODS FOR PYTHON LISTS

Let’s make a list: my_list = [10, 131, 351, 197, 10, 148, 705, 18]

my_list.append('new_element')

It adds an element to the end of your list. The argument is the new element itself.

This method updates your list and it doesn't have any output.

If you query the list after running this method:

my_list

Output: [10, 131, 351, 197, 10, 148, 705, 18, 'new_element']

CREATED BY TOMI MESTER | DATA36.COM !5

http://DATA36.COM

PYTHON FOR DATA SCIENCE CHEAT SHEET

my_list.remove(10)

It removes the first occurrence of the specified element from your list. This method

updates your list and it doesn't have any output.

my_list

Output: [131, 351, 197, 10, 148, 705, 18, 'new_element']

my_list.clear()

It removes all elements of the list. This method updates your list and it doesn't

have any output.

my_list

Output: []

Find more Python functions and methods here:

https://data36.com/python-functions

All Python built-in functions:

https://docs.python.org/3/library/functions.html

All Python string methods: 
https://docs.python.org/3/library/stdtypes.html#string-methods

All Python list methods: 
https://docs.python.org/3/tutorial/datastructures.html

IMPORTANT! These are only the built-in Python functions and methods. You can

get access to many more with the import statement. (See page 12!)

CREATED BY TOMI MESTER | DATA36.COM !6

https://data36.com/python-functions
https://docs.python.org/3/library/functions.html
https://docs.python.org/3/tutorial/datastructures.html
http://DATA36.COM

PYTHON FOR DATA SCIENCE CHEAT SHEET

IF STATEMENT

If statements are great for evaluating a condition and taking certain action(s)

based on the result.

Example:

a = 10

b = 20

if a == b:

 print('yes')

else:

 print('no')

IMPORTANT! Be really careful with the syntax.

1. Never skip the colons at the end of the if and else lines!

2. Never skip the indentation (a tab or four spaces) at the beginning of the

statement-lines!

In the if line (condition) you can use comparison and logical operators.

Let's see them. Assign four values!

a = 3

b = 4

c = True

d = False

CREATED BY TOMI MESTER | DATA36.COM !7

Comparison operator What does it evaluate? Result in our example

a == b if a equals b False

a != b if a doesn’t equal b True

a < b if a is less than b True

a > b if a is greater than b False

[your notes]

Logical operator What does it evaluate? Result in our example

c and d if both c and d are True False

c or d if either c or d is True True

not c returns the opposite of c False

http://DATA36.COM

PYTHON FOR DATA SCIENCE CHEAT SHEET

IF STATEMENT WITH MORE COMPLEX CONDITIONS

The condition can be complex.  
Example:

a = 10

b = 20

c = 30

if (a + b) / c == 1 and c - b - a == 0:

 print('yes')

else:

 print('no')

IF-ELIF-ELSE STATEMENT

You can use condition-sequences to evaluate multiple conditions.

Example:

a = 10

b = 11

c = 10

if a == b:

 print('a equals b, nice')

elif a == c:

 print('a equals c, nice')

else:

 print('a equals nothing… too bad')

Note: You can add as many elifs as you need.

CREATED BY TOMI MESTER | DATA36.COM !8

http://DATA36.COM

PYTHON FOR DATA SCIENCE CHEAT SHEET

FOR LOOPS

For loops are for iterating through iterables (e.g. lists, strings, range() objects) and

taking certain action(s) on the individual elements of the given iterable.

Example:

sample_list = ['value1', 'value2', 'value3', 'value4', 1, 2, 3, 4, True, False]

for i in sample_list:

 print(i)

Output:

value1

value2

value3

value4

1

2

3

4

True

False

The action itself can be anything, not just print(). (Even multiple actions.)

IMPORTANT! Be really careful with the syntax.

1. Never skip the colons at the end of the for line!

2. Never skip the indentations (tabs or four spaces) in the body of the loop!

CREATED BY TOMI MESTER | DATA36.COM !9

[your notes]

http://DATA36.COM

PYTHON FOR DATA SCIENCE CHEAT SHEET

FOR LOOPS (WITH range() OBJECTS)

If you want to iterate through numbers, you can use range().

Example 1:

for i in range(5):

 print(i)

Output:

0

1

2

3

4

range() is a function. It accepts three (optional) arguments: start, stop, step.

Example 2:

for i in range(100,200,20):

 print(i)

Output:

100

120

140

160

180

More about for loops: https://data36.com/python-for-loops

NESTED FOR LOOPS +  
FOR LOOPS AND IF STATEMENTS COMBINED

You can combine for loops with for loops (called nested for loops).

And you can combine for loops and if statements.

I wrote more about these here:

https://data36.com/python-nested

CREATED BY TOMI MESTER | DATA36.COM !10

http://DATA36.COM
https://data36.com/python-for-loops
https://data36.com/python-nested

PYTHON FOR DATA SCIENCE CHEAT SHEET

PYTHON FORMATTING TIPS & BEST PRACTICES

1) ADD COMMENTS WITH THE # CHARACTER!

Example:

This is a comment before my for loop.

for i in range(0, 100, 2):

 print(i)

2) VARIABLE NAMES

Conventionally, variable names should be written with lowercase letters, and the

words in them separated by _ characters. Make sure that you choose meaningful

and easy-to-distinguish variable names!

Example:

my_meaningful_variable_name = 100

3) USE BLANK LINES TO SEPARATE CODE BLOCKS VISUALLY!

Example:

4) USE WHITE SPACES AROUND OPERATORS AND ASSIGNMENTS!

Good example:

number_x = 10

number_y = 100

number_mult = number_x * number_y

Bad example:

number_x=10

number_y=100

number_mult=number_x*number_y

CREATED BY TOMI MESTER | DATA36.COM !11

http://DATA36.COM

PYTHON FOR DATA SCIENCE CHEAT SHEET

IMPORTING OTHER PYTHON MODULES AND PACKAGES

Use the import statement to expand the original Python3 toolset with additional

modules and packages.

General syntax:

import [module_name]

Or:

from [module_name] import [item_name]

THE MOST IMPORTANT BUILT-IN MODULES FOR DATA

SCIENTISTS

RANDOM

Examples:

import random

This imports the random module. (No output.)

random.random()

This generates a random float between 0 and 1. (Output example: 0.6197724959)

random.randint(1,10)

This generates a random integer between 1 and 10. (Output example: 4)

CREATED BY TOMI MESTER | DATA36.COM !12

http://DATA36.COM

PYTHON FOR DATA SCIENCE CHEAT SHEET

STATISTICS

Examples:

import statistics

This imports the statistics module.

my_list = [0, 1, 1, 3, 4, 9, 15]

statistics.mean(my_list)

statistics.median(my_list)

statistics.mode(my_list)

statistics.stdev(my_list)

statistics.variance(my_list)

These calculate the mean, median, mode, standard deviation and variance for the

list called my_list. (Note: You have to run them one by one.)

MATH

Examples:

import math

This imports the math module.

math.factorial(5)

This returns 5 factorial. (Output: 120)

math.pi

This returns the value of pi. (Output: 3.141592653589793)

math.sqrt(5)

This returns the square root of 5. (Output: 2.23606797749979)

CREATED BY TOMI MESTER | DATA36.COM !13

http://DATA36.COM

PYTHON FOR DATA SCIENCE CHEAT SHEET

DATETIME

Python3, by default, does not handle dates and times. But if you import the

datetime module, you will get access to these functions, too.

Example:

import datetime

This imports the datetime module.

datetime.datetime.now()

This returns the current date and time in tuple format. (Note: A tuple is like a list,

but can’t be changed.)

Output: datetime.datetime(2019, 7, 14, 0, 46, 30, 906311)

datetime.datetime.now().strftime("%F")

This returns the current date and time in the usual yyyy-mm-dd format.

Output: '2019-07-14'

CSV

This module helps you to open and manage .csv files in Python.

Example:

import csv

with open('example.csv') as csvfile:

 my_csv_file = csv.reader(csvfile, delimiter=';')

 for row in my_csv_file:

 print(row)

These few lines import the csv module and then open the example.csv file - where

the fields are separated with semicolons (;). The last two lines of the code print all

the rows (of the that .csv file we opened) one by one.

CREATED BY TOMI MESTER | DATA36.COM !14

http://DATA36.COM

PYTHON FOR DATA SCIENCE CHEAT SHEET

MORE INFO ABOUT THE PYTHON BUILT-IN MODULES

• https://data36.com/python-import/

• https://docs.python.org/3/library/random.html

• https://docs.python.org/3/library/statistics.html

• https://docs.python.org/3/library/math.html

• https://docs.python.org/3/library/datetime.html

• https://docs.python.org/3/library/csv.html

THE 5 MOST IMPORTANT "EXTERNAL" PYTHON LIBRARIES

AND PACKAGES FOR DATA SCIENTISTS

• Numpy

• Pandas

• Matplotlib

• Scikit-Learn

• Scipy

CREATED BY TOMI MESTER | DATA36.COM !15

https://data36.com/python-import-built-in-modules-data-science/
https://docs.python.org/3/library/random.html
https://docs.python.org/3/library/statistics.html
https://docs.python.org/3/library/math.html
https://docs.python.org/3/library/datetime.html
https://docs.python.org/3/library/csv.html
http://DATA36.COM

PYTHON FOR DATA SCIENCE CHEAT SHEET

PANDAS

Pandas is one of the most popular Python libraries for data science and analytics.

It helps you manage two-dimensional data tables and other data structures. It

relies on Numpy, so when you import Pandas, you need to import Numpy first.

import numpy as np

import pandas as pd

PANDAS DATA STRUCTURES

Series: Pandas Series is a one dimensional data structure ("a one dimensional

ndarray") that can store values, with a unique index for each value.

DataFrame: Pandas DataFrame is a two (or more) dimensional data structure –

basically a table with rows and columns. The columns have names and the rows

have indexes.

CREATED BY TOMI MESTER | DATA36.COM !16

http://DATA36.COM

PYTHON FOR DATA SCIENCE CHEAT SHEET

OPENING A .CSV FILE IN PANDAS

pd.read_csv('/home/your/folder/file.csv', delimiter=';')

This opens the .csv file that's located in /home/your/folder and called file.csv. The

fields in the file are separated with semicolons (;).

df = pd.read_csv('/home/your/folder/file.csv', delimiter=';')

This opens a .csv file and stores the output into a variable called df. (The variable

name can be anything else - not just df.)

pd.read_csv('file.csv', delimiter=';', names = ['column1', 'column2', 'column3'])

This opens file.csv. The fields in the file are separated with semicolons (;). We

change the original names of the columns and set them to: 'column1', 'column2'

and 'column3'.

QUERYING DATA FROM PANDAS DATAFRAMES

df

It returns the whole dataframe. (Note: remember, when we opened the .csv file, we

stored our dataframe into the df variable!)

df.head()

It returns the first 5 rows of df.

df.tail()

It returns the last 5 rows of df.

df.sample(7)

It returns 7 random rows from df.

CREATED BY TOMI MESTER | DATA36.COM !17

http://DATA36.COM

PYTHON FOR DATA SCIENCE CHEAT SHEET

df[['column1', 'column2']]

It returns column1 and column2 from df. (The output is in DataFrame format.)

df.column1

It returns column1 from df. (The output is in Series format.)

df[my_dataframe.column1 == 'given_value']

It returns all columns, but only those rows in which the value in column1 is

'given_value'. (The output is in DataFrame format.)

df[['column1']][my_dataframe.column1 == 'given_value'].head()

It takes the column1 column — and only those rows in which the value in column1 is

'given_value' — and returns only the first 5 rows. (The point is: you can combine

things!)

AGGREGATING IN PANDAS

The most important pandas aggregate functions:

• .count()

• .sum()

• .mean()

• .median()

• .max()

• .min()

Examples:

df.count()

It counts the number of rows in each column of df.

df.max()

It returns the maximum value from each column of df.

df.column1.max()

It returns the maximum value only from the column1 column of df.

CREATED BY TOMI MESTER | DATA36.COM !18

http://DATA36.COM

PYTHON FOR DATA SCIENCE CHEAT SHEET

PANDAS GROUP BY

The .groupby() operation is usually used with an aggregate function

(.count(), .sum(), .mean(), .median(), etc.). It groups the rows by a given column’s

values. (The column is specified as the argument of the .groupby() operation.) Then

we can calculate the aggregate for each group and get that returned to the screen.

df.groupby('column1').count()

It counts the number of values in each column - for each group of unique column1

values.

df.groupby('column1').sum()

It sums the values in each column - for each group of unique column1 values.

df.groupby('column1').min()

It finds the minimum value in each column - for each group of unique column1

values.

df.groupby('column1').max()

It finds the maximum value in each column - for each group of unique column1

values.

CREATED BY TOMI MESTER | DATA36.COM !19

http://DATA36.COM

PYTHON FOR DATA SCIENCE CHEAT SHEET

A FEW MORE USEFUL PANDAS METHODS

df.merge(other_df)

It joins df and other_df - for every row where the value of column1 from df equals

the value of column1 from other_df.

df.merge(other_df, how = 'inner', left_on = 'col2', right_on = 'col6')

It joins df and other_df - for every row where the value of ‘col2’ from df ("left"

table) equals the value of ‘col6’ from other_df ("right" table). The join type is an

inner join.

df.sort_values('column1')

It returns every row and column from df, sorted by column1, in ascending order (by

default).

df.sort_values('column1', ascending = False)

It returns every row and column from df, sorted by column1, in descending order.

df.sort_values('column1', ascending = False).reset_index(drop = True)

It returns every row and column from df, sorted by column1, in descending order.

After sorting, it re-indexes the table: removes the old indexes and sets new ones.

df.fillna('some_value')

It finds all empty (NaN) values in df and replaces them with 'some_value'.

Great pandas cheatsheet: https://pandas.pydata.org/Pandas_Cheat_Sheet.pdf

CREATED BY TOMI MESTER | DATA36.COM !20

https://pandas.pydata.org/Pandas_Cheat_Sheet.pdf
http://DATA36.COM

PYTHON FOR DATA SCIENCE CHEAT SHEET

CREATED BY

Tomi Mester from Data36.com

Tomi Mester is a data analyst and researcher. He’s worked for Prezi, iZettle and

several smaller companies as an analyst/consultant. He's the author of the Data36

blog where he writes posts and tutorials on a weekly basis about data science, AB-

testing, online research and coding. He's an O'Reilly author and presenter at

TEDxYouth, Barcelona E-commerce Summit, Stockholm Analytics Day and more.

WHERE TO GO NEXT

Find company workshops, online tutorials and online video courses on my website:

https://data36.com

Subscribe to my Newsletter list for useful stuff like this:

https://data36.com/newsletter

Online Python and Pandas tutorial (free): data36.com/python-tutorial

Python workshop for companies: data36.com/python-workshop

6-week Data Science course: data36.com/jds

CREATED BY TOMI MESTER | DATA36.COM !21

https://data36.com
https://data36.com/newsletter
https://data36.com/python-tutorial
https://data36.com/python-workshop
https://data36.com/jds/
http://DATA36.COM

